Differentiation of planetesimals and the thermal consequences of melt migration

نویسندگان

  • Nicholas MOSKOVITZ
  • Eric GAIDOS
چکیده

We model the heating of a primordial planetesimal by decay of the short-lived radionuclides Al and Fe to determine (1) the time scale on which melting will occur, (2) the minimum size of a body that will produce silicate melt and differentiate, (3) the migration rate of molten material within the interior, and (4) the thermal consequences of the transport of Al in partial melt. Our models incorporate results from previous studies of planetary differentiation and are constrained by petrologic (i.e., grain-size distributions), isotopic (e.g., Pb-Pb and Hf-W ages), and mineralogical properties of differentiated achondrites. We show that formation of a basaltic crust via melt percolation was limited by the formation time of the body, matrix grain size, and viscosity of the melt. We show that low viscosity (<1 Pa Æ s) silicate melt can buoyantly migrate on a time scale comparable to the mean life of Al. The equilibrium partitioning of Al into silicate partial melt and the migration of that melt acts to dampen internal temperatures. However, subsequent heating from the decay of Fe generated melt fractions in excess of 50%, thus completing differentiation for bodies that accreted within 2 Myr of CAI formation (i.e., the onset of isotopic decay). Migration and concentration of Al into a crust results in remelting of that crust for accretion times less than 2 Myr and for bodies >100 km in size. Differentiation would be most likely for planetesimals larger than 20 km in diameter that accreted within approximately 2.7 Myr of CAI formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iron Meteorites as Remnants of Planetesials Formed in the Terrestrial Planet

Iron meteorites are core fragments from disrupted and differentiated planetesimals [1]. Their formation location is usually assumed to be the main asteroid belt. Observational evidence, however, does not indicate that differentiated bodies or their fragments were ever common there [2]. This view is also difficult to reconcile with the fact that their parent bodies were as small as 20 km in diam...

متن کامل

Rheological, thermal and tensile properties of PE/nanoclay nanocomposites and PE/nanoclay nanocomposite cast films

The effects of three different mixers, two different feeding orders and nanoclay content on the structure development and rheological properties of PE/nanoclay nanocomposite samples were investigated. Fractional Zener and Carreau–Yasuda models were applied to discuss the melt linear viscoelastic properties of the samples. Moreover, scaling law for fractal networks was used to quantify clay disp...

متن کامل

Impact, thermal and biodegradation properties of high impact polystyrene/corn starch blends processed via melt extrusion

High impact polystyrene (HIPS)/corn starch blends were prepared in presence of glycerol as a plasticizer via melt extrusion process by a twin-screw extruder. The novelty of this work is first, because of the use of pre-gelatinized corn starch as modified one and second, the procedure of making blends by extruder which makes it ease of access and also industrially possible. The blends were then ...

متن کامل

Percolative core formation in planetesimals enabled by hysteresis in metal connectivity.

The segregation of dense core-forming melts by porous flow is a natural mechanism for core formation in early planetesimals. However, experimental observations show that texturally equilibrated metallic melt does not wet the silicate grain boundaries and tends to reside in isolated pockets that prevent percolation. Here we use pore-scale simulations to determine the minimum melt fraction requir...

متن کامل

Effect of Joule-Heating Annealing on Giant Magnetoimpedance of Co64Fe4Ni2B19-xSi8Cr3Alx (x = 0, 1 and 2) Melt-Spun Ribbons

In this work, we have studied the influence of dc joule-heating thermal processing on the structure, magnetoimpedance (MI) and thermal properties of Co64Fe4Ni2B19-xSi8Cr3Alx (x = 0, 1, and 2) rapidly solidified melt-spun ribbons. The nanocrystallization process was carried out by the current annealing of as-spun samples at various current densities. As-spun and joule-heated samples were studied...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011